POMDPs and Blind MDPs: (Dis)continuity of Values and Strategies

¹Institute of Science and Technology Austria (ISTA)

Raimundo Saona POMDPs and Blind MDPs: (Dis)continuity

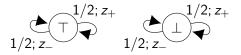
Continuity in Stochastic dynamics

(Deterministic) (dynamic)

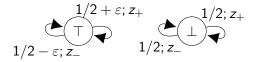
Similar? stochastic dynamic

Stochastic dynamics (MCs) must consider structure when analyzing continuity.

Continuity in Partially Observable Stochastic dynamics



(Static) partially observable (stochastic) dynamic



Similar? partially observable stochastic dynamic

Belief dynamics are fragile to structurally preserving changes.

Continuity concepts

- Value-continuity Value of similar POMDPs is close
- Weak strategy-continuity
 Some approximately-optimal strategy is still approximately-optimal in similar POMDPs
- Strong strategy-continuity
 All approximately-optimal strategies are approximately-optimal in similar POMDPs

Model	Continuity		
	Value	Weak strategy	Strong strategy
Fully-observable MDPs	Yes	Yes	No
POMDPs	No	No	No
Blind MDPs	Yes	Yes	Yes

Theorem: Deciding whether a POMDP is continuous is **algorithmically impossible**.

Remarks

- Blind MDPs are strictly more well-behaved than POMDPs
- Blind MDPs are strictly more well-behaved than MDPs

Model

A Partially-Observable Markov Decision Process (POMDP) is a tuple $\Gamma = (S, A, Z, p_1, \delta)$ where

- S is a finite set of **states**;
- A is a finite set of **actions**;
- Z is a finite set of signals;
- $p_1 \in \Delta(\mathcal{S})$ is an initial distribution;

• $\delta: S \times A \to \Delta(S \times Z)$ is a probabilistic transition function. Special cases:

$$egin{aligned} |\mathcal{Z}| = 1 & \Rightarrow & \mathsf{blind} \; \mathsf{MDP} \ \mathcal{Z} = \mathcal{S} \wedge \mathsf{supp}(\delta) \subseteq \{(s,s)\}_{s \in \mathcal{S}} & \Rightarrow & (\mathsf{fully-observable}) \; \mathsf{MDP} \end{aligned}$$

Model

- strategy $\sigma \colon \bigcup_{n \ge 0} (\mathcal{A} \times \mathcal{Z})^n \to \Delta(\mathcal{A})$
- play $\omega = (s_n, a_n, z_{n+1})_{n \geq 1} \subseteq \mathcal{S} \times \mathcal{A} \times \mathcal{Z}$
- observable history $h = ((a_i, z_{i+1}))_{i \in [m]} \in (\mathcal{A} \times \mathcal{Z})^m$
- probability $\mathbb{P}_{p_1}^{\sigma}[\Gamma]$ and expectation $\mathbb{E}_{p_1}^{\sigma}[\Gamma]$

belief

$$\mathcal{P}_m(h) \coloneqq \mathbb{P}^{\sigma}_{p_1}(S_m = \cdot \mid \forall i \in [m-1] \quad A_i = a_i, Z_{i+1} = z_{i+1}),$$

- reward $r: S \times A \to \mathbb{R}$
- objective $\gamma(\omega)$ is one of

$$\liminf_{m \to \infty} \frac{1}{m} \sum_{i=1}^{m} r(s_i, a_i) \qquad \limsup_{m \to \infty} \frac{1}{m} \sum_{i=1}^{m} r(s_i, a_i)$$
$$\liminf_{m \to \infty} r(s_m, a_m) \qquad \limsup_{m \to \infty} r(s_m, a_m)$$

Model

- set of all strategies X
- value

$$\mathsf{val}(\mathsf{\Gamma})\coloneqq \sup_{\sigma\in\mathcal{X}}\mathbb{E}^{\sigma}_{p_1}(\gamma(\omega))$$

- ε -optimal strategy $\mathbb{E}_{p_1}^{\sigma}(\gamma(\omega)) \ge \operatorname{val}(\Gamma) \varepsilon$ and its set $\mathcal{X}^*(\Gamma, \varepsilon)$
- structural equivalence $supp(\delta(s, a)) = supp(\delta'(s, a))$
- ξ-similar POMDPs

$$\sup_{s,a,s',z} |\delta(s,a)(s',z) - \delta'(s,a)(s',z)| \le \xi$$

Model	Continuity		
	Value	Weak strategy	Strong strategy
Fully-observable MDPs	Yes	Yes	No
POMDPs	No	No	No
Blind MDPs	Yes	Yes	Yes

Theorem: Deciding whether a POMDP is value-, weakly strategy-, or strongly strategy-continuous is **algorithmically impossible**.

Theorem (Stability of invariant distribution, O'Cinneide 1993)

Consider an irreducible stochastic matrix Δ . Computing the stable distribution

$$p^{\top} = p^{\top} \Delta$$

is a stable operation.

The proof is by induction on the dimension of Δ , possible thanks to a characterization of the limit

Theorem (Stability of discounted occupation times, Solan 2003)

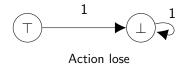
Consider a Markov Chain with a fixed structure. The λ -discounted occupation time as a function of the transition probabilities is a rational function, i.e., for $\lambda > 0$

$$\delta \mapsto time_{\lambda}(s, \delta) = \frac{poly(\delta)}{poly(\delta)}.$$

From this result, we conclude value- and weak strategy-continuity for (fully-observable) MDPs (and zero-sum stochastic games).

Motivating example

Action win



Result: This POMDP is not weakly strategy-continuous. **Proof:** There is a fragile approximately optimal strategy.

Consider $t \ge 1$ large enoughand the strategy that plays $A_1 = A_2 = \ldots = A_t = win$, and, if *lose* has been played, then $A_{m+1} = win$, if only win has been played, for $m \ge t$,

$$A_{m+1} = lose \quad \Leftrightarrow \quad |\{i \in [2..(m+1)] : Z_i = z_+\}| \ge (1 + m^{-1/4}) \frac{m}{2}$$

Proof: Fragile approximately optimal strategy

Lemma (Approximate optimality)

Consider Γ the previous POMDP. Then,

$$\mathbb{P}^{\sigma}_{p_1}[\Gamma](\exists m \geq 1, A_m = \textit{lose}) \leq \varepsilon$$
.

Lemma (Fragility)

Consider Γ' the previous POMDP. Then,

$$\mathbb{P}^{\sigma}_{p_1}[\Gamma'](\exists m \geq 1, A_m = \textit{lose}) = 1.$$

Theorem

There exists a POMDP for each of the following combinations.

Example	Continuity			
слатріе	Value	Weak strategy	Strong strategy	
#1	Yes	Yes	No	
#2	No	Yes	No	
#3	No	No	No	

Remarks:

- All continuities are different
- The exact relationship between the continuity concepts is not fully characterized.

Characterizing continuity of POMDPs

Theorem (Mathematical characterization, open)

A POMDP is XXXX continuous if and only if ???

Theorem (Algorithmic impossibility)

The problem of deciding whether a given POMDP is XXXX continuous is undecidable.

Blind MDPs: no signals guarantee continuity

Raimundo Saona POMDPs and Blind MDPs: (Dis)continuity

Blind MDPs: Belief dynamic

h

The belief update in blind MDPs is directly given by the transition. For each action a, define the matrix

$$(M_a)_{s,s'} := \delta(s,a)(s').$$

After playing actions a, b, a, ..., the beliefs are

$$p_1^{\top}$$
 $p_1^{\top}M_a$ $p_1^{\top}M_aM_b$ $p_1^{\top}M_aM_bM_a$...
For similar matrices \widetilde{M}_a , the beliefs in the corresponding similar blind MDP are

$$p_1^{\top} \qquad p_1^{\top} \widetilde{M}_a \qquad p_1^{\top} \widetilde{M}_a \widetilde{M}_b \qquad p_1^{\top} \widetilde{M}_a \widetilde{M}_b \widetilde{M}_a \qquad \dots$$

How different can they be?

Definition (Belief-continuity)

A blind MDP is belief-continuous if, for all $\varepsilon > 0$, there exists $\xi > 0$ such that, for all initial belief p_1 , sequence of actions $(a(n))_{n\geq 1}$, and $n\geq 1$

$$\|p_1^\top M_{\mathsf{a}(1)} \cdot \ldots \cdot M_{\mathsf{a}(n)} - p_1^\top \widetilde{M}_{\mathsf{a}(1)} \cdot \ldots \cdot \widetilde{M}_{\mathsf{a}(n)}\| \leq \varepsilon$$
.

Lemma

If a blind MDP is belief-continuous, then it is XXXX continuous.

Theorem

Every blind MDP is belief continuous.

Focus on the *n*-th step. Define

$$p^{ op} \coloneqq p_1^{ op} M_{a(1)} \cdot \ldots \cdot M_{a(n)}$$

 $q^{ op} \coloneqq p_1^{ op} \widetilde{M}_{a(1)} \cdot \ldots \cdot \widetilde{M}_{a(n)}$

We would like that, for all $\varepsilon > 0$, we can choose $\xi > 0$ so that, for all actions *a*,

$$\| p^{ op} - q^{ op} \| \leq arepsilon \qquad \| p^{ op} M_{\mathsf{a}} - q^{ op} \widetilde{M}_{\mathsf{a}} \| \leq arepsilon$$

A stronger notion is the invariant

$$\|\boldsymbol{p}^{\top} - \boldsymbol{q}^{\top}\| \leq \varepsilon \qquad \Rightarrow \qquad \|\boldsymbol{p}^{\top} \boldsymbol{M}_{\mathsf{a}} - \boldsymbol{q}^{\top} \widetilde{\boldsymbol{M}}_{\mathsf{a}}\| \leq \varepsilon$$

Lemma

Every blind MDP is belief-continuous as follows. For every $\varepsilon > 0$, we have that

$$\boldsymbol{\xi} \coloneqq \varepsilon \frac{\delta_{\min}}{2|\mathcal{S}|}$$

is such that

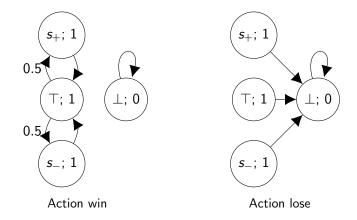
$$\sup_{\substack{m,h\\ \textit{list}(\Gamma,\Gamma')\leq\xi}} \left\| P_m[\Gamma](h) - P_m[\Gamma'](h) \right\|_1 \leq \varepsilon \,,$$

where

$$\begin{split} \delta_{\min} &\coloneqq \min\{\delta(s,a)(s') : a \in \mathcal{A}, \ s, s' \in \mathcal{S}, \ \delta(s,a)(s') > 0\}, \\ \|x\|_1 &\coloneqq \sum_{s \in \mathcal{S}} |x(s)|. \end{split}$$

Fully-observable MDPs: Fragile ε -optimal strategies

Simulating signals in fully-observable MDPs



There is a fragile approximately-optimal strategy for this MDP.

Thank you!